When working with data visualization in Python, Plotly is a powerful library that provides interactive and visually appealing plots. One common requirement is to add a secondary axis to a plot, which allows us to display two different scales on the same plot. In this article, we will explore three different ways to achieve this in Plotly Python.
Option 1: Using the `make_subplots` function
The `make_subplots` function in Plotly allows us to create subplots with shared or independent axes. We can utilize this function to create a plot with a secondary axis. Here’s how:
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# Create subplots with shared x-axis
fig = make_subplots(specs=[[{"secondary_y": True}]])
# Add traces to the plot
fig.add_trace(go.Scatter(x=[1, 2, 3], y=[4, 5, 6], name="Primary Axis"))
fig.add_trace(go.Scatter(x=[1, 2, 3], y=[10, 20, 30], name="Secondary Axis"), secondary_y=True)
# Set axis labels
fig.update_xaxes(title_text="X-axis")
fig.update_yaxes(title_text="Primary Axis", secondary_y=False)
fig.update_yaxes(title_text="Secondary Axis", secondary_y=True)
# Show the plot
fig.show()
This code snippet creates a subplot with a shared x-axis and a secondary y-axis. We add two traces to the plot, one for the primary axis and another for the secondary axis. By setting the `secondary_y` parameter to `True` for the secondary axis trace, Plotly automatically assigns it to the secondary y-axis. We can then update the axis labels using the `update_xaxes` and `update_yaxes` functions.
Option 2: Using the `add_trace` function
Another way to add a secondary axis in Plotly is by using the `add_trace` function. Here’s an example:
import plotly.graph_objects as go
# Create a figure
fig = go.Figure()
# Add the primary axis trace
fig.add_trace(go.Scatter(x=[1, 2, 3], y=[4, 5, 6], name="Primary Axis"))
# Add the secondary axis trace
fig.add_trace(go.Scatter(x=[1, 2, 3], y=[10, 20, 30], name="Secondary Axis"))
# Create the secondary y-axis
fig.update_layout(yaxis2=dict(overlaying="y", side="right"))
# Show the plot
fig.show()
In this approach, we create a figure and add two traces to it, one for the primary axis and another for the secondary axis. To create the secondary y-axis, we use the `update_layout` function and specify the `yaxis2` parameter with the desired configuration. The `overlaying` parameter set to “y” ensures that the secondary axis overlays the primary axis, and the `side` parameter set to “right” positions the secondary axis on the right side of the plot.
Option 3: Using the `make_subplots` function with shared x-axis
Similar to option 1, we can also use the `make_subplots` function to create a plot with a secondary axis. However, in this approach, we create subplots with a shared x-axis instead of a shared y-axis. Here’s an example:
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# Create subplots with shared x-axis
fig = make_subplots(rows=2, cols=1, shared_xaxes=True)
# Add traces to the subplots
fig.add_trace(go.Scatter(x=[1, 2, 3], y=[4, 5, 6], name="Primary Axis"), row=1, col=1)
fig.add_trace(go.Scatter(x=[1, 2, 3], y=[10, 20, 30], name="Secondary Axis"), row=2, col=1)
# Set axis labels
fig.update_xaxes(title_text="X-axis", row=2, col=1)
fig.update_yaxes(title_text="Primary Axis", row=1, col=1)
fig.update_yaxes(title_text="Secondary Axis", row=2, col=1)
# Show the plot
fig.show()
In this option, we create subplots with shared x-axes using the `make_subplots` function. We add the primary axis trace to the first subplot and the secondary axis trace to the second subplot. By specifying the `row` and `col` parameters, we assign the traces to the respective subplots. Finally, we update the axis labels using the `update_xaxes` and `update_yaxes` functions.
After exploring these three options, the best approach depends on the specific requirements of your plot. If you need more flexibility in terms of layout and customization, option 2 might be the most suitable. However, if you prefer a simpler and more concise solution, options 1 and 3 provide a straightforward way to add a secondary axis. Ultimately, it’s important to choose the option that best fits your needs and coding style.
4 Responses
Option 2 is the way to go! Simple and straightforward. Who needs complicated shared x-axis? #plotly
Option 2 may seem simple, but shared x-axis offers more flexibility and clarity in data interpretation. Dont be afraid of a little complexity! #plotly
Option 2 for adding secondary axis seems way easier. Who needs extra complications?
I couldnt disagree more! Option 2 may appear easier, but it lacks the flexibility and precision of Option 1. Embrace the challenge and broaden your horizons! Sometimes a little complexity leads to greater rewards.