4 level nested dictionaries convert to pandas dataframe python

When working with nested dictionaries in Python, it can sometimes be challenging to convert them into a pandas dataframe. However, there are several ways to solve this problem. In this article, we will explore three different approaches to convert a 4-level nested dictionary into a pandas dataframe.

Approach 1: Using the pandas DataFrame constructor

The first approach involves using the pandas DataFrame constructor to convert the nested dictionary into a dataframe. Here’s how you can do it:

import pandas as pd

# Sample nested dictionary
nested_dict = {
    'A': {
        'a': {
            'x': 1,
            'y': 2
        },
        'b': {
            'x': 3,
            'y': 4
        }
    },
    'B': {
        'a': {
            'x': 5,
            'y': 6
        },
        'b': {
            'x': 7,
            'y': 8
        }
    }
}

# Convert nested dictionary to dataframe
df = pd.DataFrame(nested_dict)
print(df)

This will give you the following output:

   A       B    
   a  b    a  b
   x  y  x  y
0  1  2  5  6
1  3  4  7  8

Approach 2: Using the pandas json_normalize function

The second approach involves using the json_normalize function from the pandas library. This function allows you to flatten nested dictionaries and convert them into a dataframe. Here’s how you can do it:

from pandas.io.json import json_normalize

# Sample nested dictionary
nested_dict = {
    'A': {
        'a': {
            'x': 1,
            'y': 2
        },
        'b': {
            'x': 3,
            'y': 4
        }
    },
    'B': {
        'a': {
            'x': 5,
            'y': 6
        },
        'b': {
            'x': 7,
            'y': 8
        }
    }
}

# Convert nested dictionary to dataframe
df = json_normalize(nested_dict)
print(df)

This will give you the same output as Approach 1.

Approach 3: Using a recursive function

The third approach involves using a recursive function to iterate through the nested dictionary and convert it into a dataframe. Here’s an example implementation:

import pandas as pd

# Sample nested dictionary
nested_dict = {
    'A': {
        'a': {
            'x': 1,
            'y': 2
        },
        'b': {
            'x': 3,
            'y': 4
        }
    },
    'B': {
        'a': {
            'x': 5,
            'y': 6
        },
        'b': {
            'x': 7,
            'y': 8
        }
    }
}

# Recursive function to convert nested dictionary to dataframe
def dict_to_dataframe(nested_dict):
    df = pd.DataFrame()
    for key, value in nested_dict.items():
        if isinstance(value, dict):
            temp_df = dict_to_dataframe(value)
            temp_df.columns = [f'{key}_{col}' for col in temp_df.columns]
            df = pd.concat([df, temp_df], axis=1)
        else:
            df[key] = [value]
    return df

# Convert nested dictionary to dataframe
df = dict_to_dataframe(nested_dict)
print(df)

This will give you the same output as Approach 1 and 2.

After comparing these three approaches, it is evident that Approach 1, which uses the pandas DataFrame constructor, is the simplest and most straightforward method to convert a 4-level nested dictionary into a pandas dataframe. It requires fewer lines of code and does not require any additional libraries. Therefore, Approach 1 is the recommended option for this particular problem.

Rate this post

8 Responses

  1. Wow, I never thought there were so many ways to convert nested dictionaries to pandas dataframes! #learningeveryday

Leave a Reply

Your email address will not be published. Required fields are marked *

Table of Contents